
193 930 DEICHMARXINS PR04RAT ION FOR AND AGGREGATE OND SORT ING 1/'1
RETRIEVALS IN THE HULTI-SACKEND DATABASE SYSTE(U)
ANVAL POSTGRADUATE SCHOOL MONTEREY CA F E ICELSE ET AL.

UNCLASSIFIED JUM 67 F/0 12/7 ML

EnimhmmhEEmnEE
EIIhIIIIIIIII

IIIIIIIIII



I1.0 ..

I11.25"4 6

*MiCOOPY RESOLUTKM4 TEST CHARI

4,__AWM&WJRMOF STANO60 IllS-A

-w~~~~e w -- 0U



I1U fILE COPY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

D C
' ~~ fOELECTE 

n

THESIS
BENCHMARKING PREPARATION FOR

AND AGGREGATE AND SORTING RETRIEVALS
IN THE MULTI-BACKEND DATABASE SYSTEM

by

Frank Edward Kelbe

and

Dana Stephen Majors

June 1987

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

II
I

-p. -~.87 
8 28 1 78



UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

Unclass fled
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION'IA/VAILABILITY OF REPORT

Approved for public release;
SDECLASSIFICATIONDOWNGRADING SCHEDULE Distribution is Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUVBER(S)

64 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate Schoo] Code 52 Naval PostTraduate School

6C ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City. State. and ZIP Code)

.Monterey, California 93943-5000 Monterey, California q3 L3-5D0?

8a NAME OF FUNDING,SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDEN.FCATION NuMBER
ORGANIZATION (If apitcable)

8c AODRESS(CIry. Stafe, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROAECT TASK WORK .NiT
ELEMENT NO NO NO ACCESS:Ofi NO

11 T.'LE (include Security CIawifcation)

BENCHMARKING PREPARATION FOR AND AGGREGATE AND SORTING RETz _ 7. T, _' T,. THE
MYULTI-BACKEND DATABASE SYSTEM
PERSONAL AUTHOR(S)

Kelbe, Frank Edward and Majors, Dana Stephen
'3aj 'Y( O REPORT 13b 'ME COvERED 14 DATE OF REPORT (Year MonthI Day) '5 PACE (5,,NT

Master's Thesis FROM to . .. 1987 June 86
6 SLPPL,,ENTARY NOTATION

COSATi CODES 1B SUBJECT TERMS (Continue on reverie of neceury a"d dent, t by block number)
ELD GROUP SUB-GROUP Multi-backend Database System; Database; Pench-

mark, Retrieval, Sorted Retrieval; Aor7ate Te-
trieval, Benchmark Preparation; MBSPerformanc

"9 .STRACT (Continue on reverse of neceary and identfy by block number)

The scone of this thesis is twofold. The first is to nrovi -a ethod-
olo-y for the performance evaluation of the Multi-Backend Dat ha:e S:tem,
MRDS. The second is to describe the implementation and inte-ra'_t n f'mr
two new database operations, the arrre7ate retrieval and the -ort,,J re-
t - _eval.

The thesis provides the essential tools for the successful evluazisn
of MDS. The performance evaluation of MBDS is necessary to v ,
rerformanc gains in terms of re.-nonse-time reduction, and oa' " v.....
in terms of resnonse-time invariance. :he imUlementation and v eration
of the ao rerate retrIeval and sorted retrieval provi le tlo a ita
retrieval operations to MPDS The a7 yregate retrieval ser' : -' I.
the user to obtain -xtreme1Y u:, fu! lata not inherent lv avalla -1 !., !n. The

'O0 D S-Q'3uT'ONAVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

)a,_4CLSSF'PED.%JNLrMITE0 [0 SAME AS RPT oDTIC SERS Uncla:.: 1fied
22a %AME OF RESPON iBLE .OVIOUAL 22b TELEPmONE(IrKude AreaCode) 22c OFF,(; S"Ms0.

Prof. David K. H o ( 4-od .-

00 FORM 1473,84 MAR 83 APR eO,ton -ay be usCtd .i-l, euhawsted SECuRIrY CLASS1FCATO'. O; "ws PACE
All other edtom te obiolete Mn c 1 a::iV le l1



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE MbW OWS

#18 SUBJECT TERMS (continued)

evaluation.

#19 ABSTRACT (continued)

data itself. The sorted retrieval operation allows the user
to retrieve data and have it presented in a more meaningful
fashion.

Accesioo For

NTIS CRA&I
DTIC TAB ['

Ju .-t c, ..... " . .... ... ....... . .

B y ... ................

. or

:''" 2 Unclassified

SECURITY CLASIFICATION Of THIS PAG9(lh a, Gla EneetE)



Approved for public release; distribution is unlimited

Benchmarking Preparation for
and Aggregate and Sorting Retrievals in

the Multi-Backend Database System

by

Frank E. Kelbe
Lieutenant, United States Navy

B.S.E.E., University of New Mexico, 1980

and

Dana S. Majors

Lieutenant, United States Navy
B.S., California State University, Sacramento, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1987

Authors: C,___ __ _ _ _ _ _ _

Frank Edw*r'd"Kelbe

Dana Stepen Majors

Approved By: L "? - -
t

DavdK. Hsiao, Thesis Advisor

Steven A Demnr6ian, Second Reader

Vincent . LChairman,
Department f Computer Science

Kneale T. Marshall --"" . .Dean of Information and Poli cy Sc !

3

9r

N]



ABSTRACT

The scope of this thesis is twofold. The first is to

provide a methodology for the performance evaluation of the

Multi-Backend Database System, MBDS. The second is to

describe the Implementation and integration for two new

database operations, the aggregate retrieval and the sorted

retrieval.

The thesis provides the essential tools for the

successful evaluation of MBDS. The performance evaluation of

MBDS is necessary to validate the performance gains in terms

of response-time reduction, and capacity growth in terms of

response-time invariance. The implementation and integration

of the aggregate retrieval and sorted retrieval provide two

advanced data retrieval operations to ZBDS. The aggregate

retrieval operation allows the user to obtain extremely

useful data not Inherently available in the data Itself. The

sorted retrieval operation allows the user to retrieve data

and have it presented in a more meaningful fashion. IA '

4



TABLE OF CONTENTS

I. INTRODUCTION .......... .................... 9

A. THE BACKGROUND ........ ................. 9

1. Three Database-System Approaches ....... . 10

2. Software Multiple-Backend Database Computers 11

3. The Multi-Backend Database System (MBDS) . 12

B. SCOPE OF THE THESIS ..... .............. 16

C. ORGANIZATION OF THE THESIS ... ........... 17

II. THE MULTI-BACKEND DATABASE SYSTEM (MBDS) ...... .. 19

A. THE ATTRIBUTE-BASED DATA MODEL .. ......... . 19

B. THE DIRECTORY STRUCTURE .... ............ 21

C. THE DATA MANIPULATION OPERATIONS .. ........ 22

1. Database Modification Operations ....... . 24

2. Database Access Operations .. ......... . 25

D. THE PROCESS STRUCTURE .... ............. 27

1. The Processes of the Controller . ...... 28

2. The Processes of Each Backend . ....... 28

E. THE MBDS MESSAGE TYPES AND FORMAT . ....... 31

III. PERFORMANCE EVALUATION .... .............. 34

A. A PERFORMANCE MEASUREMENT METHODOLOGY ..... .. 34

1. Two Types of Performance Measurement . . . . 35

2. Modifications to MBDS software ........ .. 37

3. A Computer-Aided Benchmarking System . ... 41

B. SYSTEM CONFIGURATION CONSIDERATIONS . ...... 44

5



1. Physical Size Relationships.........45

2. Message-passing Constants and Relationships 47

3. Other System Constants.................48

IV. AGGREGATE RETRIEVAL.................52

A. REQUIREMENTS............................52

1. The Design Of The Aggregate Retrieval . .. 53

2. Example Requests and Results .............. 55

B. IMPLEMENTATION AND INTEGRATION .............. 56

1. The Basic Operation.............57

2. Execution Of The Aggregate Request. ...... 58

C. TESTING.............................62

V. SORTED RETRIEVALS..................64

A. REQUIREMENTS............................64

1. The Design Of The Aggregate Retrieval . .. 65

2. Example Requests and Results .............. 65

B. IMPLEMENTATION AND INTEGRATION ............ 66

1. The Basic Operation.............67

2. Execution Of The Aggregate Request. ...... 68

C. TESTING......................71

D. THE COM4BINATION SORTED AND AGGREGATE RETRIEVAL .72

VI. CONCLUSIONS.........................76

A. SUMMARY................................76

B. DIFFICULTIES ENCOUNTERED....................77

1. Message Passing................77

2. System Size .................. 80

C. RECOMMENDATIONS FOR FUTURE EFFORTS ........... 82

6



LIST OF REFERENCES.....................83

INITIAL DISTRIBUTION LIST.................85

7



ACKNOWLEDGEMENT

This thesis is part of ongoing database systems research
being conducted at the Laboratory for Database Research at

the Naval Postgraduate School, Monterey, California, under

the direction of Dr. David K. Hsiao. This research is

supported by grants from the Department of Defense STARS

Program, and from the Office of Naval Research.

We would like to thank the following people who have

helped us complete this thesis:

Dr. David K. Hsiao, for the guidance, wisdom and motivation
he provided.

Dr. Steve Demurjlan, who's technical expertise was
continually called upon in order to complete this thesis.

8

~I



I. INTRODUCTION

Organizations have the need to perform fast, accurate,

efficient, and economical Information processing. Database

systems consisting of both hardware and software, better

known as database management systems (DBMS), have been

designed to meet these needs. Many variations of database

systems have recently entered the marketplace, each tailored

to meet specific processing requirements. Research in the

computer science community has been pursuing several new

approaches to satisfy today's growing Information needs. In

this chapter we begin by reviewing the research efforts in

DBMS, to provide a background for the thesis. Next we

present a brief discussion on the Multi-Backend Database

System. Third, we outline the motivation for the work

presented in this thesis. Finally, we review the

organization of the thesis.

A, THE BACKGROUND

In this section, we focus on the impact of various

database system architectures on their hardware upgrade.

Database system hardware must be upgraded due to either the

performance degradation of the system software or the

advances in technology. We first review the three approaches

to database systems. Next, we discuss in more detail the

software multiple-backend database approach. Finally, we

9

r.*



discuss a specific multiple-backend system, the Multi-

Backend Database System, or MBDS. The discussion focuses on

three aspects of MBDS; the design considerations, the

performance and capacity growth claims, and the system

configuration.

1. Three Database-System Approaches

As identified by Hsiao [Ref. 1], research has

produced three database-system approaches: 1) the

traditional mainframe-based system, 2) the software single-

backend system, and 3) the software multiple-backend system.

The mainframe-based approach is characterized by the

database system residing on the mainframe computer as an

applications program. The database system must share the

computer's resources with other application programs

residing on the computer.

In the single-backend approach, the database system

resides on a dedicated backend computer. The general-

purpose computer (termed the host) provides the interface

between the user and the database system. All database

management services are provided by the backend computer via

the host. The database system, residing on the backend, has

exclusive access to all of the resources on the backend

computer.

The software multiple-backend system is an extension

of the single-backend concept. There is one or more

controller computers connected to multiple, backend

10



computers. The Interface to the database between the user

and the host Is through the controller computer(s). Each

backend contains a portion of the database, and maintains

exclusive access to the data. The software multiple-backend

system is designed to overcome both performance and upgrade

problems normally experienced with the traditional and the

single-backend systems. This system Is more unconventional

than the first two, and is a new kind of database system

2. Software Multiple-Backend Database Computers

In the software multiple-backend approach, the

database system is not mainframe-based, and each database

system consists of at least one controller and two or more

backends. A communications network is used to interconnect

the backend and controller systems. This approach differs

from the single-backend approach in that the database is not

physically located on a single backend. Instead, the

database is distributed across all of the multiple backend

computers. As to functionality, the controller is

responsible for 1) the communication with the hosts (or

terminals), 2) the scheduling and control of transactions

being executed by the backends, 3) the correlation of the

data for each transaction from all of the backends, and 4)

the routing of the responses back to the user. The backend

software is replicated across all of the backend computers.

The functionality of the system requires each backend to be

responsible for 1) the management and execution of database

11

,t W ,5. "tU .*-*.;.- -. .,. .,.. .V* .- . . . ... . .-. ..... . . . ..- .--...- * - -.... ',[?" ,.... ........



transactions, 2) permitting concurrent access to data via

parallel processing of transactions, 3) processing the

database information stored on the disk, and 4)

communicating with other backends and the controller to pass

information and results. Each backend is also responsible

for executing the required primary database operations such

as retrieve, insert, delete, and update.

Unlike the other two approaches, the software

multiple-backend approach stresses large-capacity and high-

performance database management. The capacity growth and

performance gains are now directly related to the number of

backends in the system. An increase in the number of

backends for a given system can result in both increased

capacity and performance.

3. The Multi-Backend Database System (MBDS)

The Laboratory for Database Research at the Naval

Postgraduate School has developed a prototype software

multiple-backend system, known as MBDS [Refs. 2,3,4]. One

minicomputer or microcomputer serves as the controller,

while multiple microcomputers and their associated disk

systems serve as the backends. The controller and all

backends are Interconnected by a high-speed broadcast bus.

Together, the three subsystems, controller, backends, and

broadcast bus, constitute a system specifically designed to

overcome the performance and capacity growth problems

normally experienced by traditional database systems. The

12

-.- 'E~* **'~ .



data In the MBDS system Is evenly distributed across all of

the backend disk systems. A user transaction may therefore

be executed simultaneously by all backends.

a. Design Considerations

The design of MBDS, proposed by Menon [Ref. 5],

has been influenced by three primary objectives; 1)

performance gains in terms of response-time reductions, 2)

capacity growth in terms of the response-time invariance,

and 3) system expandability. The first goal enables the

multiplicity of the backends to be directly related to the

capacity growth of the system in terms of the response-time

invariance. By increasing the number of backends

proportionally to the increase of transaction responses,

MBDS produces invariant response times for user

transactions. The second goal permits the multiplicity of

the backends of MBDS to be directly related to the

performance gains of the system in terms of response-time

reduction. By increasing the number of backends while the

size of the database and the size of the transaction

responses remain constant, the MBDS system produces a

reciprocal reduction in the response times for user

transactions. The third goal has been met, in terms of the

ease in adding new hardware (i.e., backends) to the system,

and in configuring the existing software. When a new backend

is added to the system, the software is replicated to the

new backend, and the database is redistributed.

13



b. Performance and Capacity Growth Claims

Performance problems and upgrade issues have

always been an obstacle in traditional mainframe-based

systems and software single-backend systems. The software

multiple-backend approach attempts to overcome these

problems through specialization of the database operations

on multiple, dedicated backends.

The two goals of the Multi-Backend Database

System are to overcome upgrade and performance problems

normally associated with traditional systems. Expansion is

made easy by replicating the software on all backends In a

system. Expansion to a system simply requires the necessary

hardware for a new backend. The software on the new backend

is identical to the existing backends. If a database system

is extended by adding new backends while keeping the size of

the database constant, a reciprocal decrease in the response

times for given transactions occurs. Second, if the system

is extended by adding a number of backends proportional to

the increase In transaction responses, the system produces

Invariant response times for given transactions. This allows

a database to grow with no sacrifice in performance.

The first goal directly relates the multiplicity

of the number of backends in the system to the performance

gains of the system in terms of the response-time reduction.

Response-time reduction is a measure of the time reduction

associated with processing a given set of requests on a

14



system with multiple backends, as compared to a single-

backend system. The second goal relates the multiplicity of

the backends to the capacity growth of the system in terms

of response-time invariance. Response-time invariance is the

change in the response time of a request, when the request

is processed in a single-backend system with a response set

of x records, as compared to processing the same transaction

in a system with m backends and a response set of mx records

[Ref. 6]. A response set is the set of responses returned by

the backend(s) to the user for a given transaction. The size

of the response set is determined by the size of the

database (i.e., a given request produces more responses in a

large database.) The definition of response-time invariance

must therefore be restated as the amount of change in the

response time of a given request, when the request is

processed in a single-backend system with a database size of

x records, as compared to processing the same request in a

system with m backends and a database size of mx records.

c. The MBDS System Configuration

The MBDS hardware configuration at the

Laboratory for Database Research consists of eight ISI

(Integrated Solutions Incorporated workstations)

microcomputers. All systems utilize the 4.2 BSD Unix

operating system. One workstation functions as the

controller, leaving seven workstations to act as backends.

Each workstation is based on the Motorola 68020 CPU,

15

I



featuring 16 megabytes of virtual memory space per process.

The controller system has four Mbytes of main memory, while

each of the backends has two Mbytes of main memory. Each

backend has a pair of dedicated Control Data Corporation

Winchester-type drives: one drive with a capacity of 100

Mbytes dedicated to the operating system, and a second drive

dedicated to the database system, having a capacity of 500

Mbytes. The system is connected by way of an Ethernet

broadcast bus, capable of transferring data at a rate of 10

megabits per second.

B. SCOPE OF THE THESIS

The scope of this thesis is twofold. The first scope is

to provide a general methodology that may be used in the

performance evaluation of a database computer, namely the

Multi-Backend Database System, MBDS. The scope is also to

provide the necessary tools for evaluating the system. As

previously discussed in Section A, the two claims of the

multi-backend design are performance gains in terms of

response-time reduction, and capacity growth in terms of

response-time invariance. The validation of these claims is

of our primary concern. We present a detailed discussion

concerning database configuration considerations. Included

in the discussion are references to preferred test database

sizes and record sizes. We also discuss in detail the

relationships between several internal parameters within the

MBDS software. The determination of these parameters is

16



critical to the successful performance evaluation of MBDS.

The discussions also contain recommendations concerning test

set generation and system configurations.

The second scope of the thesis is to describe the

implementation and Integration considerations for two new

database operations. The current data language implemented

on MBDS provides for five primary database operations. These

five operations are Insert, Delete, Update, Retrieve, and

Retrieve-Common. In addition, two types of retrieval

options, while Initially designed, have never been

implemented. The first operation is the aggregate retrieval.

The second operation is the sorted retrieval, or by-clause.

The combination of retrieval with aggregation and sorting,

is also considered. These new options allow the user to

process the retrieved data into a more useful form. The

operations have been implemented and integrated into the

existing MBDS software to provide more powerful database

access operations.

C. ORGANIZATION OF THE THESIS

In addition to this introduction, the thesis is divided

into five chapters. In Chapter II we provide an overview of

the Multi-Backend Database System, and give the necessary

background material on MBDS used in the context of the

thesis. In Chapter III we describe a general methodology for

the performance evaluation of MBDS. A discussion of relevant

conditions and system configurations is given. Since

17

I
F



Chapters IV and V are similar in scope, for both we provide

an in-depth discussion of the implementation and integration

of two new functions into MBDS. In Chapter IV we address the

addition of the aggregate retrieval operation, while in

Chapter V we address the sorted retrieval, or by-clause,

operation. Finally, in Chapter VI we present a summary and

the conclusions of the thesis, as well as some insight into

the problems of integration that were encountered. Also

included is a brief discussion on possible future work to be

conducted.

18!



II. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

In this chapter, we discuss the required background

material on MBDS that Is essential for reading this thesis.

First, we present an overview of the data model of MBDS, the

attribute-based data model, which allows users to specify

the structure of the database. Next, we present a

description of the internal directory structure of MBDS.

Third, we review the attribute-based data language (ABDL),

with a description of the different types of database

operations. Fourth, we overview the system structure of

MBDS, focusing on how the software is partitioned by

functionality in the controller and backends. Finally, we

provide a description of the MBDS message format, and a

complete listing of the message types.

A. THE ATTRIBUTE-BASED DATA MODEL

MBDS is based on the attribute-based data model proposed

in (Ref. 7], extended in [Ref. 81, and studied in [Ref. 9].

In the attribute-based data model, data is considered in the

following constructs: database, file, record, attribute-

value pair, keyword, attribute-value range, directory

keyword, non-directory keyword, directory, record body,

keyword predicate, and query. Informally, a database is a

collection of files. Each file contains a group of records

characterized by a unique set of keywords. Each record is

19

!,



composed of two parts; attribute-value pairs, or keywords,

and the record body. An attribute-value pair is a member of

the Cartesian product of the attribute name and the value

domain of the attribute. As an example, the attribute-value

pair <POPULATION, 30000> has a value of 30000 for the

population attribute. A record contains at most one

attribute-value pair for each attribute defined in the

database. Directory keywords for a record (or a file) are

either the attribute-value pairs or their attribute-value

ranges that are kept in a directory for identifying the

records (filesi. Those attribute-value pairs which are not

kept in a directory are appropriately termed non-directory

keywords. The record body is the rest of the record, and is

normally textual information. An example record is shown

below.

(<FILE,USCensus>,<CITY,Carmel>,<POPULATION,15000>,
(Temperate climate))

The angle brackets, <,> enclose an attribute-value pair,

i.e., keyword. The curly brackets, (,) include the record

body. The record Is enclosed in the parenthesis. By

convention, the first attribute-value pair of all records of

a file Is the same. The attribute Is normally FILE, and the

value is the appropriate file name.

The records of the database may be identified by keyword

predicates. A keyword predicate is a tuple consisting of a

directory attribute, a relational operator ( =, !=, <, <=,

>, >- ), and an attribute value. An example of a keyword

20

.!

4,

- . -. -' % .



predicate, or more specifically a less-than predicate, would

be POPULATION < 25000. These keyword predicates, combined in

disjunctive normal form, comprise a query of the database.

The query

(FILE = USCensus and CITY = Monterey) or
(FILE = USCensus and CITY = Carmel)

will be satisfied by all records of the USCensus file with

the CITY of Monterey or Carmel. The parenthesis bracketing

the conjunction are simply for clarity.

B. THE DIRECTORY STRUCTURE

To manage the database (often referred to as user data),

MBDS uses directory data. The directory has the following

constructs: attributes, descriptors, and clusters. An

attribute is used to represent a category of the user data;

e.g., POPULATION is an attribute that corresponds to actual

populations stored in the database. A descriptor is used to

describe a range of values that an attribute can have; e.g.,

(10001 < POPULATION < 15000) Is a possible descriptor for

the attribute POPULATION. The descriptors that are defined

for an attribute, e.g., population ranges, are mutually

exclusive. The notion of a cluster may now be defined. A

cluster Is a group of records such that every record in the

cluster satisfies the same set of descriptors. For example,

all records with POPULATION between 10001 and 15000 may form

one cluster whose descriptor is the one given above. In this

case, the cluster satisfies the set of a single descriptor.

21

~ p. %WV %.V .... !
A~L , P



In reality, a cluster tends to satisfy a set of multiple

descriptors. The directory is organized in three tables: the

attribute table (AT), the descriptor-to-descriptor-id table

(DDIT), and the cluster-definition table (CDT). The

attribute table maps directory attributes to the descriptors

defined on them. A sample AT is depicted in Figure 2.a. The

descriptor-to-descriptor-id table maps each descriptor to a

unique descriptor id. A sample DDIT is given in Figure 2.b.

The cluster-definition table maps descriptor-id sets to

cluster-ids. Each entry consists of the unique cluster id,

the set of descriptor ids whose descriptors define the

cluster, and the ids of the records in the clusters. A

sample CDT is shown in Figure 2.c. Thus, to access the user

data, MBDS must first access directory data via the AT,

DDIT, and CDT.

C. THE DATA MANIPULATION OPERATIONS

The attribute-based data language (ABDL), as defined by

Banerjee [Ref. 10] and extended by Tung [Ref. 11], is the

data language of MBDS. ABDL supports five primary database

operations, INSERT, DELETE, UPDATE, RETRIEVE, and RETRIEVE-

COMMON. This section provides a discussion of the two

classes of operations, the database modification operations,

and the database access operations.

A request in ABDL is defined as a primary operation with

a qualification. A qualification specifies the part of the

database that is to be operated on. A transaction is a group

22



Attribute DDIT Entry

POPULATION D1i

CITY D21

FILE D31

Figure 2a. An Attribute Table (AT)

0 5 POPULATION 5 25000 D1i

25001 5 POPULATION 5 100000 D22

100001 5 POPULATION 5 250000 D13

250001 5 POPULATION 5 1000000 D14

CITY = Monterey D21

CITY = Carmel D22

CITY = London D23

CITY = Toronto D24

FILE = CanadaCensus D31

FILE = USCensus D32

(Dij: Descriptor j for attribute i)

Figure 2b. A Descriptor-to-Descriptor-Id Table (DDIT)

Id Desc-Id Set Rec-Id

C1 (Dl1,D21,D32) A1,A2

C2 (D14,D22,D32) A3

C3 (D12,D23,D32} A4

C4 (D14,D24,D31) A5

Figure 2c. A Cluster-Definition Table (CDT)

23

ia



of two or more requests. The five primary database

operations may be categorized into two types of requests;

operations that modify the database, and operations that do

not modify the database, or retrieval operations. ABDL

provides five seemingly simple database operations, which

are nevertheless capable of supporting complex and

comprehensive transactions. Following is an informal

presentation of the two classes of operations and the five

request types.

1. Database Modification Operations

Database modification operations are those

operations which modify the database in some way when

performed. In ABDL, the modification operations are INSERT,

UPDATE, and DELETE. The INSERT request Is used to insert a

new record into the database. The qualification of an INSERt

request is a list of keywords and a record body. The

following example,

INSERT (<FILE, USCensus>,<CITY, Carmel>,<POPULATION,1500>)

is a request that Inserts a new record with no record body

Into the USCensus file for the city of Carmel with a

population of 15000.

An UPDATE request Is used to modify existing records

in the database. The qualification of an UPDATE request

consists of two parts. The first part is the query, which

specifies which records in the database are to be modified.

The second part is the modifier, which specifies how the

24

I
I



records being modified are to be changed. In the following

example,

UPDATE ((FILE = USCensus) and (POPULATION > 50000))
<POPULATION = POPULATION + 7500>

the request modifies all records of the USCensus file where

the population is greater than 50000. Those records which

match the query will have the POPULATION value increased by

7500. In this example, ((FILE = USCensus) and (POPULATION >

50000)) is the query, and (POPULATION = POPULATION + 7500)

is the modifier.

A DELETE request is used to permanently remove one

or more records from the database. The qualification of a

DELETE request is a query. All records which match the query

in the database are deleted. The following example,

DELETE((FILE = USCensus) and (POPULATION > 45000))

is a request that removes all records in the USCensus file

whose population value is greater than 45000.

2. Database Access Operations

Database access operations do not modify the

database in any way when performed. Data is only retrieved

for examination from the database. The database may be

accessed in several ways. This section provides brief

descriptions and examples of each of the access operations.
•'I1

The RETRIEVE request is used to retrieve records

from the database. The qualification of a retrieve request

consists of a query, a target-list, and an optional by-

clause. The query specifies which records are to be

25
p

p
I1



retrieved. The target-list consists of a list of output

attributes. The target-list may also contain aggregate

operations, I.e., AVG, COUNT, SUM, MIN, MAX, on one or more

of the output attributes. The optional by-clause may be used

to sort the output data in relation to one of the specified

output attributes. The following RETRIEVE example,

RETRIEVE ((FILE = USCensus) and (POPULATION > 30000))
(CITY)

retrieves the city names of all records in the USCensus file

with populations greater than 30000. The query is (FILE =

USCensus) and (POPULATION > 30000) and CITY is the target-

list. An example of a retrieve using an aggregate operator

would be,

RETRIEVE (FILE = USCensus)(COUNT(CITY))

which would return a count of all the cities within the

USCensus file. In this example, the query is simply (FILE =

USCensus), and the target-list (COUNT(CITY)) is composed of

only the aggregate operator COUNT. The following example

utilizing a by-clause,

RETRIEVE ((FILE - USCensus) and (POPULATION < 100000))
((CITY, POPULATION) BY CITY)

would retrieve all of the cities with a population less than

100000, and then present the cities and the corresponding

populations. The data is shown sorted in ascending order by

city name. The query in this example is ((FILE = USCensus)

and (POPULATION < 100000)) and the target-list is (CITY,

26

• • . . o m P • - - -- . ,. ' 
"



POPULATION) BY CITY. The BY CITY in the target list

specifies that the data Is to be sorted by city name.

Finally, the RETRIEVE-COMMON request is used to

merge two files by common attribute-values. Logically, the

RETRIEVE-COMMON request can be considered as two requests

that are processed serially in the following form.

RETRIEVE (query-i)(target-list-1)
COMMON (attribute-i, attribute-2)
RETRIEVE (query-2)(target-list-2)

The common attributes are attribute-i (associated with the

first retrieve request) and attribute-2 (associated with the

second request). The next example is a RETRIEVE-COMMON

request,

RETRIEVE ((FILE = USCensus) and (POPULATION > 200000))(CITY)
COMMON (POPULATION, POPULATION)
RETRIEVE ((FILE = CanadaCensus) and (POPULATION > 200000))(CITY)

which finds all records in the CanadaCensus file with

population greater than 200000, finds all records in the

USCensus file with population greater than 200000,

identifies records of respective files whose population

figures are common, and returns the two city names whose

cities have the same population figures.

D. THE PROCESS STRUCTURE

In addition to the two communication processes, get-net,

which sends a message over the network, and put-net, which

receives a message from the network, there are other

processes in MBDS. Currently, MBDS does not communicate with I
a host computer. This absence requires that the test-

27

-,

Jp



interface, the process used to Interact with MBDS, be placed

within the MBDS controller. The software of a backend is

complete, and is capable of performing all of the primary

database operations. An overview of the MBDS process

structure, both controller and backend, may be seen in

Figure 2.d.

1. The Processes of the Controller

In addition to the communications and test-interface

processes, the controller consists of three additional

processes: request preparation, insert information

generation, and post processing. Request preparation

receives, parses, and formats a request (transaction) before

sending the formatted request (transaction) to the

directory-management process in each backend. Insert

information generation is used to provide additional

information to the backends when an insert request is

received. Since the user data is distributed, the insert

occurs only at one of the backends. Thus the controller must

determine the backend at which the Insert will occur, along

with certain directory information. Post processing is used

to collect all the results of a request (transaction) and

forward the results to the user.

2. The Processes of Each Backend

In addition to the communication processes, each

backend is composed of four other processes. They are, of

course, different from the controller processes. They are

28



TESTES

POS PR~EB~GCONRLLER REMAIES

0EUR OST PUT NET

BROADCAST BRS

PUT NET 9BACKEND ENT

DIRECTORY SAC

LJ SMARCH

RECM "OARDD7 E

Figure 2.d The MBDS Process Structure

29j



directory management, concurrency control, disk I/O, and

record processing. Directory management performs the search

of the directory tables to determine the secondary storage

addresses necessary to access the clustered records. More

specifically, directory management controls the execution of

a request at a backend, and accesses the secondary-storage-

based directory tables, I.e., AT, DDIT, and CDT. By

traversing the directory tables for a request, directory

management is able to determine the disk address where the

relevant data is stored. (We recall that the disk addresses

are in the CDT.) These disk addresses are then sent to

record processing which accesses the clustered records.

Concurrency control is used to arbitrate the access of the

directory data and user data. Since new descriptors, new

clusters, and new secondary storage addresses may be defined

dynamically, concurrency control is used to ensure the

consistency of both the directory data and the user data.

Record processing performs the access and modification of

the database by Issuing I/O requests to the disk I/O

process, operating on the retrieved data for retrieval,

aggregation, and sorting, and altering the database for

modification operations. Finally, the disk I/O process is

used to issue read and write requests in a synchronous

fashion, and employs a scheduling algorithm to optimize disk

access.

30



E. THE MBDS MESSAGE TYPES AND FORMAT

In this section, we briefly describe the MBDS message-

passing facilities first described in [Ref. 7]. MBDS

utilizes one general message format, as shown in Figure 2.e.

Message Type (a numeric code).

Message Sender (a numeric code).

Message Receiver (a numeric code).

Message Text (an alphanumeric field
terminated by an end-
of-message marker).

Figure 2.e The General Message Format

This same message format is used for each of the three

message passing facilities, namely, messages within the

controller, messages within each backend, and messages

between computers. The message type is one of the 36 message

types contained within the MBDS message-passing facilities.

These messages are shown In Figure 2.g. The message sender

and receiver in Figure 2.e can be any one of the 12

processes in either the controller or the backend.

The message text Is the actual data being sent in the

message. Figure 2.g provides a complete list of the message

types. The figure includes a column for the source,

destination, and path for each message type. The key to the

codes used in each of the columns is given in Figure 2.f.

31

I



Source or Destination Designation Path Designation

HOST : Host Machine (Test Interface) H Host
REQP : Request Preparation C Controller
IIG : Insert Information Generation C Controller
PP : Post Processing C Controller
DM : Directory Management B A Backend
RECP : Record Processing B A Backend
CC : Concurrency Control B A Backend

Figure 2.f The MBDS Message Types

As an example, consider message 12, Backend Aggregate

Operator results, from Figure 2.g. The entry in the source

column Is RECP and can be found in Figure 2.f corresponding

to the source, record processing. Similarly, the entry for

DEST in Figure 2.g is PP, corresponding to the destination

of post processing from Figure 2.f. The key to the two

letters in the PATH column may also be found in Figure 2.f.

A path of BC is found to be an Inter-computer path from a

backend to the controller. Each message type has one

distinct source, destination, and path to follow.

32



MESSAGE-TYPE NUMBER AND NAME SOURCE DEST PATH

I Traffic Unit HOST REQP HC
2 Request Results PP HOST CH
3 Number of Requests in a Transaction REQP PP C
4 Aggregate Operators REQP PP C
5 Requests With Errors REQP PP C

6 Parsed Traffic Unit REQP DM CB
7 New Descriptor Id fIG DM CB
8 Backend Number IIG DM CB
9 Cluster Id DM IIG BC
10 Request for a New Descriptor Id DM IIG BC

11 Backend Results for a Request RECP PP BC
12 Backend Aggregate Operator results RECP PP BC
13 Backend By-Clause Results RECP PP BC
14 Sorted Results to Post Processing RECP PP BC
15 Record That has Changed cluster RECP REQP BC

16 Results of a Retrieve Caused by an Update RECP REQP BC
17 Descriptor Ids DM DMs BB
18 Request and Disk Addresses DM RECP B
19 Changed Cluster Response DM RECP B
20 Fetch DM RECP B

21 Old and New Values of Attribute RECP DM B
Being Modified

22 Type-C Attributes for a Traffic Unit DM CC B
23 Desc-Id Groups for a Traffic Unit DM CC B
24 Cluster Ids for a Traffic Unit DM CC B
25 Release Attribute DM CC B

26 Release all Attributes for an Insert DM CC B
27 Release Descriptor Id Groups DM CC B
28 Attribute Locked
29 Descriptor-Id Groups Locked CC DM B
30 Cluster Ids Locked CC DM B

31 Generated Inserts Completed RECP REQP BC
31 Generated Inserts Completed REQP DM CB
31 Generated Inserts Completed DM RECP BC
32 Request Id of a Completed Request RECP CC B
33 Update Request has Completed RECP DM B

33 Update Request has Completed RECP DM B
34 Source Retrieve-Common has Completed D CC B
35 Notification of a Retrieve-Common Request REQP RECP CB
36 Target Retrieve-Common Records RECP RECPS B

Figure 2.g The MBDS Message Types

33

I

I



III. PERFORMANCE EVALUATION

In this chapter, we detail a general methodology that

may be used In the performance evaluation of a database

system. In the first part of the chapter, we present a

performance evaluation methodology for MBDS. The benchmark

strategy focuses on collecting the response time of requests

(transactions) that are processed by the system. In the same

section, we describe system dependent considerations along

with some remarks on the utilization of a computer-aided

benchmarking system (CABS), detailed in (Refs. 6,12]. In the

second part of this chapter, we discuss database system

configuration considerations for benchmarking. The MBDS

system's internal constants and parameters are discussed in

detail, and some example configurations are provided.

A. A PERFORMANCE MEASUREMENT METHODOLOGY

Performance evaluation, or benchmarking, involves the

design and generation of test transactions and test

databases for prototype database systems. The tests must be

thorough and be able to establish standards (i.e.,

benchmarks) for the performance or throughput of the

database system. The methodology presented in this section

is developed to evaluate a Lpecific class of database

systems, namely, multiple-backend database systems. The key

concern in the benchmarking of a database system is the

34



specification of the workload. The workload of a database

system is characterized by three models that are

hierarchically dependent: a model of the machine, a model of

the database, and a model of the application. Therefore, to

adequately develop a fair and unbiased benchmark set, the

workload must be machine-independent, database-independent,

and application-independent. To achieve machine-

independence, the benchmark is constructed without bias

toward any particular hardware organization or software

architecture. To achieve database-independence, the

benchmark database is independent of the database model of

the real-world database. And, to achieve application-

independence, the benchmark applications are generic.

In the remainder of this section, we first provide a

brief description of the two types of performance

measurements, and why each type is necessary. Next, we

describe some of the system configuration modifications that

were required to facilitate the performance evaluation of

MBDS. Finally, a discussion on the utilization of CABS in

the generation of the test benchmark set is provided.

1. Two Types of Performance Measurement

There are two types of methodologies applicable to

the benchmarking of a database system. The first is the

Internal performance measurement methodology, characterized

by the fine granularity of the measurements produced. The

second methodology is the external perfopmanoe measurement

35



methodology, providing rough (relatively) measurements of

overall system performance.

The goal of the internal performance measurement

methodology is to provide methods and tools to enable us to

better understand the target system by measuring specific

aspects of that system. A complete understanding of how the

system performs internally may lead to design modifications

or to fine-tuning of the system for better performance. The

tools should be fully integrated into the system, leaving

them transparent to the user. The methodology relies on

checkpoints internal to the database system software. A

checkpoint is defined as a procedural invocation inserted

into the system's flow of control to call the performance

measurement routines used for the data collection. The

adding of checkpoints into the system introduces additional

system overhead. The checkpoint software places additional

demands on the system by requiring the resources for data

storage, message passing, and information processing

relating to the checkpointing data.

The goal of external performance measurement is to

provide a collection of methods and tools which enable us to

measure the system as a whole. Using this methodology, we

can measure the total work being done by the database

system. The focus of external measurements is on the

response time of the system, i.e., the elapsed time between

the issuance of a request and the receipt of the response to

36



the request. Whereas internal performance measurement has

been shown to be useful in the microscopic examination of

the work being performed by a system, external performance

measurement provides a macroscopic view of the work being

performed by a system. The external performance measurement

software should have negligible overhead, i.e., the response

time with external performance measurements being performed

should be the same as the response time without the

measurements being performed. The reason the overhead is

negligible is that only two timing checkpoints need to be

made. These checkpoints are placed at the beginning of a

request and the end of the response to the request, thus

providing the elapsed time of the response for a request.

The checkpoints are placed at a very high level to ensure a

complete measurement of the total elapsed time.

2. Modifications to MBDS software

Several minor modifications to the existing MBDS

software are required to allow benchmarking of the system.

This section first describes those modifications, and then

the limitations imposed.

a. Specific Modifications

The Multi-backend Database System originally

utilized a VAX-11/780 (VMS OS) as the controller, and two

PDP-1l/44s (RSX-11M OS) as backends. As described in Chapter

I., the current configuration utilizes ISI workstations for N

both the controller and the backends. The change from the

37



VMS operating system to the use of ISI workstations and the

4.2 BSD Unix operating system required a change in the

timing software of MBDS. The basic operation of the timers,

as previously discussed, remained unchanged because the

changes were operating system dependent. The scope of the

changes was limited to changing the calls to system supplied

functions. These system function calls were those concerned

with retrieving times from the hardware's internal system

clock.

There was a change in the granularity of the

times available when utilizing the system clock. The

previously available granularity was limited to time units

in terms of hundredths of a second. This was acceptable for

external timing measurements, but unacceptable when

performing internal timing measurements. The modifications

provided the software with a microsecond time units.

Although this Is a very fine granularity, and at first

appears to be very useful for obtaining precise internal

performance measurements, we found that this was not the

case. When using times with rough granularity such as

hundredths of a second, the execution of the software in

terms of function calls, system calls, etc., is negligible.

When the granularity becomes as fine as microseconds, those

previously negligible times now become a factor. The time

required for calls now impacts the results of the internal

measurements, thereby providing Incorrect results. For this

38

I

, - -. V~ *?~ 4.r~v (%.\r~ ~ 4 .~*.: *



reason, although microsecond time units were available from

the system, only three decimal digits, (thousandths of a

second) were actually utilized. The last two digits of

precision were discarded.

The user interface required modification to

allow the presentation of the external timing results. The

previous configuration presented the user with only the

elapsed time. The modification added the additional

presentation of start time, stop time, and the number of

buffers of data that were received in the course of the

response to the transaction. The number of buffers was shown

to allow the evaluator to determine how much data was

actually received from the backends in comparison to the

expected amount of data. As we discuss in Section C, this

allows the evaluator to compare the results from two

requests, each returning the same number of buffers, but

accessing different amounts of data. This comparison can

provide a rough estimate of the system overhead in terms of

message passing.

b. Limitations

There are several specific limitations on the

existing system that impact on the benchmarking of the

system. The first of these limitations is the internal

performance measurement software. The performance

measurement system places additional demands on the MBDS

system message-passing software. The message-passing

39

% %%

%5'

'



routines of the MBDS backends are not designed to handle the

transfer of, normally, 200 internal performance-measurement

messages from a backend to the controller. There is not

sufficient space available to store the information required

to access this many messages. MBDS contains all the

necessary software for internal performance measurement,

but, for the reasons just stated, does not utilize the

functions. When the internal performance measurement

functions are required, the MBDS system is easily extended

to meet the demands.

The second limitation on the system is due to

the message-passing protocols utilized in MBDS. Messages

sent to the backends from the controller, and messages

between backends are broadcast over the Ethernet. The

problem with this protocol is at the receiving end. Because

each backend is waiting for broadcast messages, it accepts

all incoming messages, assumes the message is destined for

that backend, and processes it. This presents a problem if

the message is from another system, process, etc. The

software is designed around the premise that MBDS is the

only user of the network. This assumption is very often

invalid. For this reason, attempts must be made to isolate

MBDS and the network from the rest of the 'world' when

benchmarking is being performed. This prevents the

unnecessary overhead of having to process, and ignore

unwanted messages found on the network.

40

.A . . . . . . * .



WWWUNFW nw n M- -- -fiW1n-

The final system limitation is specific to the

hardware and associated operating system being utilized.

Since MBDS has multiple processes executing on the

controller and backends, the operating system must obviously

support multi-tasking. A multi-tasking capability normally

has associated with it the virtual memory concept, the

ability to page data from primary to secondary memory, as

well as the ability to swap processes to and from secondary

memory. This can present inconsistencies if the operating

system is swapping MBDS processes to secondary memory during

the benchmarking process. To preclude this problem, it

becomes necessary to prevent other users from utilizing any

of the systems being used by MBDS and to also be able to

force the MBDS processes of both the controller and backends

to be memory resident.

3. A Computer-Aided Benchmarking System

A Computer-Aided Benchmarking System (CABS) as

described in [Refs. 6,12] is available for use in the

performance evaluation of MBDS. The original design factors

utilized in the design and implementation of CABS were

presented in (Ref. 13]. This section presents some remarks

on its effectiveness in relation to the benchmarking of

MBDS, an overview of CABS, and a discussion of its

limitations.

41



a. The Effectiveness of CABS

CABS is an extremely useful system in the

performance evaluation of MBDS. A complete set of

performance measurement tools are generated with minimal

user Intervention. Numerous parameters are adjusted to

Insure database-Independence and application-independence

when generating the benchmarking information. It provides

the user with a systematic method to generate the test

databases and the test transaction mixes, to collect the

test results, tc interpret the results, and to verify the

results against established measures (benchmarks).

b. An Overview of CABS

The primary operation of CABS is the generation

of test transactions and test databases that may be used for

the benchmarking of parallel, multiple-backend computers, in

particular, MBDS. A design feature of the system is to

minimize the required input from the user. The user needs

only to supply three essential elements of information to

CABS:

1) the number of backends in the system to be tested,

2) the amount of disk storage per backend, and

3) the size of the data transfer from secondary storage
(disk) to primary storage (main memory).

Once the user has provided the necessary information, CABS

automatically generates the test databases and the test

transaction mixes. It also provides a comprehensive report

to guide the user through the testing process. The CABS

42



system is able to generate test sets for almost any

combination of input data.

For a given test database, two sets of

configurations are generated, one for the measurement of the

response-time reduction, and the second for measurement of

the response-time invariance. The number of configurations

within each set is dependent on the number of backends in

the system. CABS determines the correct database size to

evenly distribute the data over all backends, so the

performance-gain claims may be verified. To verify growth-

capacity claims, the database must incrementally increase in

size, while Increasing the number of backends. The total

number of configurations required is (2M - 1), where M is

the number of backends in the system. (Ref. 12)

c. CABS Limitations

CABS contains several imbedded assumptions about

the size of the test database. When performing initial

performance evaluations, it may be desireable to utilize

relatively small databases, allowing preliminary

verification of performance claims. Once the claims are

initially verified, a comprehensive performance evaluation

may be conducted. This would preclude the need to load

megabytes worth of data if the system did not Initially meet

expectations. CABS does not allow for such an initial

verification. Because of internal calculations and size

43



dependencies, CABS generates a minimum database size of four

megabytes per backend.

The second CABS limitation is a minor one, and

may easily be fixed by someone requiring the use of CABS.

CABS does not include a target-list in the transaction

mixes. The requests generated include the required

qualifications so the correct amount of data is accessed and

retrieved for the request, but omits a target-list. The user

must either modify the CABS software directly, or must edit

each individual test transaction mix file and add the

appropriate target-lists.

B. SYSTEM CONFIGURATION CONSIDERATIONS

This section contains a detailed discussion of the

relationships between critical internal constants within the

MBDS software, and serves as an aid to those evaluating the

performance of MBDS in the future. A change to any of the

constants discussed In this section results in an entirely

new instantiation of the database system software. A change

in one constant many times necessitates the modification of

other interrelated constants. It Is the evaluators

responsibility to carefully consider each change. The

evaluator must reconfigure the database system so it can

handle the demands placed upon it during the evaluation. The

configuration must also accurately reflect a database system

which may be used in real-world applications, so that the

44



results of the evaluation reflect the actual performance of

the system.

In the remainder of this section, we first provide an

example demonstrating the relationships between physical

size parameters. Next, we present an example illustrating

the determination of system message-passing constants.

Finally, we describe other system constants, and explain the

relationships between them. The reader should be familiar

with the tables in each of the sections, which contain a

list and brief description of the critical system constants

to be discussed.

1. Physical Size Relationships

This section discusses, by way of example, the

Interrelationships between internal parameters In the MBDS

software. The internal parameters or constants are as

follows:

(a) RecSize: This is the maximum size of each
physical record. The system has only one
record size defined.

(b) ANLength: The length of an attribute-name.
(c) AVLength: The length of an attribute-value.
(d) TrackSize: This is the size of a logical track.
(e) MAXADDRS: The number of physical addresses

required. Defined by the number of
records in the database, the record
size, and the track size.

The record size (a) Is normally the parameter that is

adjusted most often to correspond to the different test

configurations. For performance evaluation, we can assume

that there is no record body, only attribute-value pairs

45

I



(keywords). This assumption is Justified by the fact that

the retrievals made during the performance evaluation are

for keywords only. As an example, we choose a record size of

200. (Size and length remain dimensionless In this

discussion - actual internal representation is machine

dependent.) This suggests that the size of the attribute-

value pair be defined in terms of the record size of 200.

The attribute-name (b) and attribute-value (c) parameters

(lengths) are the smallest units of length in the parameter

definitions. If we choose an attribute-name and attribute-

value length of 10 each, this gives us a combined length of

20 for a keyword. This allows a total of 10 attribute-value

pairs for each record.

MBDS currently uses the notion of a logical track

size to store data on secondary storage. This requires the

logical track size (d) to be defined. It Is not possible to

extend the storage of a record across a track boundary. This

necessitates the determinatlon of track size In terms of

record size. In addition, each record requires a small

amount of storage overhead (approximately 4 bytes per

record) which must be accounted for in the track size. For

our example, we choose a track size of 1024, providing

storage for 5 records in each track. These parameters define

the physical structure of the database.

The directory-management process in each backend is

responsible for the generation of addresses for accessing

46

5-



the clustered records in the database. The number of

addresses for each backend Is finite, and is determined in

relation to the track size and the database size. The size

of the database Is predetermined, and is based on the size

required for the evaluation. The total number of records In

the database divided by the number of records per track

yields the total number of required tracks for the database.

This number is the maximum number of addresses (e) required,

and must be set accordingly.

2. Message-passing Constants and Relationships

This section discusses the relationships between the

size of the internal message buffers, and the size of the

actual messages. The constants are as follows:

(a) ResBufSize: The length of the result buffer in
record processing.

(b) PPResBufSize: The length of the result buffer in
post processing.

(c) RESLength: The length of the result buffer in
the test interface of the
controller.

(d) MSGLEN: The length of the messages between
processes and computers.

An important factor is the size of the buffers and messages

within MBDS. There are buffer sizes defined in record

processing (a), post processing (b), and the test interface

(c). All of these buffer sizes should be the same to avoid

any problems when transferring data between buffers in

different processes. The transfer of data from the disk I/O

process to record processing in the backends require the

47

A

.w ' .*



message-buffer (d) sizes to match or exceed the track size.

This allows record processing to extract an entire track and

only require one buffer. For our example, we choose a track

size of 1024. The size of the messages (d) passed between

processes and computers must be large enough to hold at

least one buffer and the associated message overhead. The

overhead includes information such as the traffic-id, the

request number, the message number, and delimiting

information within the message itielf, such as beginning-of-

message, beginning-of-result, end-of-result and end-of-

message. This overhead normally amounts to approximately 10-

20 bytes. Accordingly, for our example, we choose a message

size of 1040.

3. Other System Constants

There are several other parameters that should also

be considered when configuring MBDS. These constants, with

brief descriptions, are listed below.

(a) REQLength: The maximum length for any request.
(b) TILength: The number of digits in a traffic

unit id. Defines the maximum number
of transactions that may occur per
session.

(c) RTMAXENTRY: The maximum length of the internal
request table for storing the parsed
request.

(d) QRMAXENTRIES: The maximum length of the query
table. Should be the same as (c).

(e) MAXFIELDS: The maximum number of attribute-
value pairs for a database file or
template.

(f) MaxCids: The maximum number of clusters
allowed in a database.

(g) QRMAXDIDS: The maximum number of Descriptor-Ids
found for any query.

48



(h) ReqMaxDidSets: The maximum number of DID sets for
any one request.

(i) DTMAXDESC: The maximum number of descriptors in
the internal descriptor table.

The request length (a), is the maximum allowable length in

terms of the number of alphanumeric characters a request may

be. The traffic-unit id (b) is simply a sequential numbering

of all traffic-units issued throughout a session with the

database system. If the constant specifies, for example,

five digits in each id, then there could be a maximum of 105

possible ids. which is normally sufficient.

The request table constants, (c) and (d), are

related to the number of fields allowed (e) in a record

template or file. A field is defined as an attribute-value

pair. The request table has an amount of overhead that is

dependent on the type of request. For example, an Insert

request has seven entries in the table used by the system

(see Chapters IV and V). If the number of fields were 30,

there would be a requirement for 60 additional entries in

the table to accommodate the attribute-name and attribute-

value defined for each field. Therefore, the size of the

table would have to be, as a minimum, 67.

The maximum number of clusters permitted in the

system is described by the constant in (f). The number of
q

clusters required is dependent on the descriptors for a

database. Each directory attribute must have associated with

it a collection of descriptors, located in the DDIT (see

49

I

-- .- .- .-



Chapter I.C.). The characteristics of the user data, along

with the collection of descriptors for each directory

attribute, together define the number of clusters required.

The entries (g) through (i) are all related to the

characteristics of the data defined in the descriptor-ids

for each directory attribute. The constant in (g) simply

defines the number of allowable descriptor-ids for any given

request. The constant in (h) is related, in that it defines

the maximum number of allowable descriptor-id sets for any

given request. The size of the set is determined by the

cross-product of all descriptors accessed for any one

request. The constant in (i) is also similar because it

defines the limitation on the number of descriptors allowed

for a database. These constants do not necessarily have a

specific value that can be set to guarantee reliable

operation of MBDS. Each of the values depend on the data to

be used in the system. Thus, the evaluator must know what

data is to be used in the evaluation in advance, and

configure the system accordingly.

Lastly, we collect and present the constant values

discussed in this section in Figure 3.a. The values marked

with an asterisk in Figure 3.a indicate values that are

dependent on the test database used. The values listed were

determined for a database of up to 2500 records and 25

descriptors.

50



Parameter Value

RecSize 200
ANLength 10
AVLerigth 10
TrackSize 1024
MAXADDRS 500*
ResiiufSize 1024
PPResBufSize 1024
RESgLength 1024
MSGLEN 1040
REQLength 500*
TlLerigth 5*
RTMAXENTRY 67
QRMAXENTRIES 67
MAX_-FIELDS 30
MaxCids 25*
QRMAXDIDS 20*
ReqMaxDidSets 25*
DT MAX DESC 25*

Figure 3.a Parameter Values

51

S



IV. AGGREGATE RETRIEVAL

In this chapter we discuss the aggregate retrieval

operation, and the implementation and integration of the

operation into the Multi-Backend Database System, MBDS. The

problems associated with implementation, integration, and

testing are also discussed. The execution of an aggregate

request is traced in detail from both a user's perspective

and at the system level.

The first section of this chapter deals with some of the

requirements that are involved with the implementation of

the new aggregate operation. A description of the operation

is given, including example requests and corresponding

results. The second section describes the actual

implementation of the aggregate retrieval and provides some

insight into the problems encountered with the integration

into the MBDS system. Finally, a discussion of applicable

testing methodologies and the results obtained by testing

the newly developed code are given.

A. REQUIREMENTS

A modern database should be capable of performing more

than the basic insert and retrieval operations. It is

important that the user be able to retrieve data and have it

presented in a meaningful way. The aggregate retrieval

52

. . , i .,.. . .. ] ] .I 11 . - d.l ] R - . .. . -



Iwv-vwiwr,. rim FM- Vd-uVWVVVV -w . V. -U

operation provides the user with just such capability by

applying statistical functions on the data that is accessed

and retrieved. An operation such as obtaining the count of a

specific data element can provide extremely useful data

which is not inherently available in the data itself. The

most common numerical functions have been included in MBDS.

The included aggregate operators are sum, minimum, maximum,

count, and average (mean). As the reader may recall, a

standard retrieve request consists of a query and a target-

list. The query specifies which records are to be retrieved.

The target-list specifies which attributes are to be

retrieved and returned in the response. The aggregate

operator is considered an optional part of the primary

retrieval operation, and is capable of being applied to one

or more of the attributes contained within the target-list.

1. The Design of the Aggregate Retrieval

In this section we discuss the general algorithm for

processing aggregate operations in MBDS. A short review of

how the aggregate operators are processed is also presented.

All of of the operators perform in the same general fashion

with most of the work being performed in the backend. Each

backend performs the aggregation for the data present on the

particular backend. The results of the aggregation are sent

to the controller for further aggregation. When results

have been received from all the backends, the operation is

53



completed and the results are sent to the user via the test

interface process.

With the exception of average, the processing of the

different aggregate operators is very similar. For count, as

each record is retrieved in a backend, the value for the

requested attribute is counted. In post processing, the

count from each of the backends is added to obtain the

overall count. For maximum, as each record is retrieved the

attribute value is compared with a stored value (initially a

very small number) and if it is greater than the stored

number it replaces it. In post processing the maximum value

from each of the backends is compared and the final value is

obtained. The minimum works in the same way except it

replaces the stored value only if it is less than the stored

value and it is initalized with a very large number. The

operation of minimum in post processing is also similar.

Sum works by maintaining a running total of each value as it

is retrieved in the backend. In post processing the

individual sums from the backends are added to produce the

final value to be sent to the test interface. The average

operation Is somewhat different from the others. For

average, each backend keeps, two pieces of data, a count and

a sum for the requested attribute value. After the last

record has been retrieved in a backend, the sum and count is

sent to post processing. In post processing, the individual

sums and counts are added. After results have been received

54

I



from all backends the average value is computed and sent to

the test interface.

2. Example Requests and Results

We now present an overview of the use of the

aggregate operators and the corresponding results produced.

The syntax of the aggregate retrieval operation is similar

to that of a normal retrieval. When using an aggregate

operator, the operator is specified in the target-list with

the attribute it is to operate on. As an example the

retrieve shown below returns all SNO and PNO attribute-

values, as well as the average of all QTY attribute-values.

[RETRIEVE(File=Ship)(SNO,PNO,AVG(QTY))]

When the request is executed, the aggregate operator is

applied to all values for the attribute QTY in the database.

(<SNO, S6>, <PNO, P2>)
(<SNO, 52>, <PNO, P1>)
(<SNO, S3>, <PNO, P3>)
(<SNO, S5>, <PNO, P6>)
(<SNO, S2>, <PNO, P4>)
(<SNO, S4>, <PNO, P7>)
(<SNO, S7>, <PNO, P9>)
(<SNO, S5>, <PNO, PB>)
(<SNO, S7>, <PNO, P3>)
(<SNO, S2>, <PNO, P3>)
(<SNO, Si>, <PNO, P2>)
(<SNO, S3>, <PNO, P2>)
(<AVG(QTY), 1438.417>)

We note that the results of the retrieval are presented as

attribute-value pairs. The aggregate results are listed at

the end of the result list also as an attribute-value pair.

55

I'



Following are some additional sample retrievals for

all of the newly implemented aggregate operators in MBDS.

[RETRIEVE(File=Ship)(SNO,PNO,MAX(QTY))]
[RETRIEVE(File=Ship)(SNOPNO,MIN(QTY))]
[RETRIEVE(File=Ship)(SNO,PNO,SUM(QTY))]
[RETRIEVE(File=Ship)(SNO,SUM(QTY),AVG(QTY),COUNT(PNO))]

The aggregate operators may be applied in any combination on

the same or different attributes. However, the operators

min, max, sum, and average may be applied only to attributes

specified to have numeric attribute values. The count

operator may be applied to attributes having numeric or non-

numeric attribute values.

B. IMPLEMENTATION AND INTEGRATION

This section describes the process of implementation and

Integration of the aggregate operators into the existing

MBDS software. Our primary goal was to implement the

functions in such a manner as to allow the functions to

maximize the work done by the backends, and to minimize the

work done by the controller. This goal was in step with the

original goals of MBDS. Another implementation goal was to

utilize the functions In the existing system to the greatest

extent possible with minimal modification.

Our goals required that we perform a comprehensive study

of the existing MBDS software as well as the many supporting

technical reports. Because the need for aggregate operators

had been foreseen in the initial design of MBDS, our goal

was made much more realizable. The tasks of parsing, syntax

56



checking, and formatting the request table had already been

implemented in the request preparation process of the

controller. Several functions had been stubbed in the source

code in both the record processing and the post processing

processes. The Implementation was divided into two main

areas; record processing in the backend and post processing

in the controller, thus evenly distributing the effort.

1. The Basic Operation

The operation of a retrieval with aggregate

operators is very similar to the operation of a retrieval

with no aggregate operators. When a retrieve request

arrives in record processing, the target list, as shown in

Figure 4.a, is searched for any aggregate operators.

0 Beginning of Request
1 Traffic Id
2 Request Number
3 Routing Indicator Code
4 Request Type Code
5 Number of Keywords or Predicates

Value

End of Conjunction
End of Query
Attribute
Aggregate Opcode or 000
Attribute
Aggregate Opcode or 000
Attribute

End Of Target List
Attribute for By-Clause
With
End of Request

Figure 4.a Target List for a Retrieve

57

a



If an aggregate operator is found, a structure is allocated

for use In processing the request. As each record is

retrieved, the aggregate operation is performed for the

specified attribute, and the rest of the record is buffered

in preparation for sending to post processing. When the

last record for a backend is read, the aggregate result,

along with any other remaining data, is sent to post

processing.

2. Execution of the AggreQate Reauest

This section describes the sequence of events in the

execution of a retrieve operation which includes an

aggregate operator. The reader will recall that MBDS uses

Intra- and inter-computer messages for control and transfer

ring data. Recall that in Figure 2.g we have listed the

types of messages used by MBDS for Internal process

coordination and control. Figure 4.b schematically displays

the controller and backend processes as well as the messages

which are sent between the individual processes and between

the backend and controller for a retrieval with an aggregate

operator. The order in which the messages are passed are

denoted alphabetically (e.g. 'A' is first). The number

following the letter denotes the message type as listed in

Figure 2.g.

A retrieve request with an aggregate operator

originates in the Test Interface process. The completed

request is sent from the test interface to the request

58



TOUTE THUE
i iINT DfGtW

' GE ID IG, WWO

12 [

G1"1

___PCY XROET REES

A G G R Etff B ys

DACENER1O
PUT ~T GET NE

SeE TO TERKS

Il~e ORY EARCHC6, H16

RE~OR

Figure 4.b The Sequence of Messages For E.xecuting
a Retrieve With Aggregate Operator

59

SEARCH

DESCR'I



preparation process for parsing, syntax checking, and

formatting Into a request table (Al). Request preparation

notifies post processing of the number of the requests in

the transaction (B3). Upon completion of this, request

preparation sends the parsed traffic unit to directory

management (C6). Directory management calls on

concurrency control to lock the directory attributes (D22).

After the attributes are locked, concurrency control

notifies directory management of the event (E28), and

directory management begins a descriptor search for the

retrieve. Once this is completed, directory management

notifies concurrency control to release the locks on the

attributes (F25), and directory management broadcasts the

descriptor Ids to the other backends (G17). The directory

management processes in the other backends are also sending

their descriptor Ids to the directory management in this

backend (H17). The backends use the Information received

from all of the other backends to form descriptor-id groups.

These groups are are sent to concurrency control to be

locked (123). After concurrency control notifies directory

management that these groups are locked (J29), directory

management performs a cluster search and notifies

concurrency control to release the locks for the retrieve

(K27). Next, directory management sends the cluster ids for

the retrieval to concurrency control (L24). Concurrency

control notifies directory management when the clusters have

60



been locked (M30). At this time, directory management

determines the disk addresses for the request. Directory

management then sends the retrieve request and its disk

addresses to record processing (N18). As needed, record

processing interacts with disk I/O for database information

(020). When record processing finishes executing the

retrieve, concurrency control is notified (P32) that the

request is done, and the locks on the cluster ids are

released.

The aggregation for each of the operators besides

the average operator, is performed in the backend. For the

average operator, the data values are counted and a running

total kept, in each backend. When a request is completed in

the backends, the sums and counts from each backend are sent

to the controller. These values are added and the average is

then calculated in post processing. After the retrieval

results have been aggregated in a backend, the results are

sent to post processing (Q12) for further aggregation with

the results from other backends. When the results from all

of the backends are received, the aggregate operation is

completed and the results sent to the test interface for

display (R2).

C. TESTING

In this section we discuss one of the most important and

time consuming stages in the software life cycle, the

61



testing of software. The objective of testing is to locate

and correct as many errors as possible. The testing of the

retrieve with aggregate operations was done with the

objective of revealing specific classes of errors.

The testing process took place in two phases. The first

phase occurred prior to the integration of the new software

into MBDS and the second phase after integration. Several

techniques were used in testing the aggregate retrieval.

These techniques include boundary testing, unit testing and

structure testing. Several special cases were also

considered, including testing all operators on the same

attribute-value pair, and retrieval from a backend which

contained no data matching the query. After integration,

testing was initially performed using a single backend, and

was followed using multiple backends. Overall, our testing

process followed the aggregate request through it's

execution path as shown in Figure 4.b. In the the process,

we are confident that our testing has been rather complete

and comprehensive.

The first phase involved unit testing of the record

processing and post processing modules prior to integration

into MBDS. Unit testing of the individual modules was

accomplished utilizing a test harness written specifically

to test each module. With a few slight modifications to

parameters, the aggregate retrieval module was then used to

drive the testing of post processing. It was at this time

62



that testing of boundary conditions, and testing of

particular program paths for each module occurred. No

significant errors were discovered in this phase.

The second phase of testing involved the testing of the

aggregate modules after their integration into MBDS. This

proved to be far more difficult than the first phase of

testing. MBDS is a large system, (approximately 35000 lines

of code) resulting in each cycle of the compile, link, test,

and debug loop to be very time consuming. Because of the

size of MBDS this phase of testing was divided into three

parts. The first part was the testing of the functions in

record processing. During this part, a minor error was

discovered which was eventually traced to the parser. A

retrieval operation with a count aggregate operator was

arriving in record processing as a sum operator. This

error, as well as other minor errors, were detected and

easily corrected during this stage. Part two involved test-

ing of the functions in post processing. Errors which were

found were relatively minor. The third part consisted of

repeating the testing performed in parts one, and two using

multiple backends. Very few errors were discovered and those

that were found were easily corrected.

63



- -rrm 1WERfLWXXWaW S -_ r g r n_ nr

V. SORTED RETRIEVALS

In this chapter we discuss the need and functionality of

the sorted retrieval operation. First we describe the

motivation behind the implementation and integration of the

sorted retrieval into MBDS. Included are some example

requests and the corresponding responses. Next, we examine

the use of the sorted retrieval, and it's operation at the

software system level in detail, and include a detailed

trace of a so.ted retrieval request. Third, we discuss the

testing of the sorted retrieval operation or by-clause and

mention some of the difficulties encountered. Finally, we

discuss the combination of the aggregate and the by-clause

operations. The integration of the two independent functions

as well as the ensuing problems are discussed.

A. REQUIREMENTS

A modern database should be capable of performing more

than just the basic insert and retrieval operations. Data

can take on more meaning when the user can issue a retrieval

request, and have the resulting data displayed in a sorted

fashion. The by-clause provides the user with just such a

capability. This sorted retrieval, or by-clause, is an

optional part of the retrieval operation and can be applied

to both string and numeric data as a sorting attribute.

64



1. The Design of The Sorted Retrieval

The overall design of the sorted retrieval is

straightforward. The data local to each backend is hashed

and stored in the virtual memory. After the last record for

a by-clause is read in a backend the hashed records are

sorted. The sorted records are then sent to the controller

for merging. The merged records are then sent to the user

via the test interface process.

When a request with a by clause is received by a

backend a hash table is allocated for the request. As each

record is retrieved it is hashed on the sorting attribute,

it's address is stored in a hash table and the record is

stored in the virtual memory. When the last record in a

retrieve is read, the buckets are sorted and sent to post

processing for merging. When the records arrive in post

processing, the records for all backends are merged and the

results sent to the user via the test interface process. In

the design of the sorted retrieval, the retrieve-common

implementation [Ref. 14] was studied closely. The hashing

algorithm and hashing structures designs utilized in the

retrieve-common implementation were used in the design of

the sorted retrieval. The reader is referred to [Ref 14]

for a more detailed discussion of these algorithms.

2. Example Requests and Results

In this section we provide the reader with a brief

overview of the operation of the sorted retrieval at the

65

,.



user level. To utilize the sorting function of the

retrieval operation, the user must specify which attribute

in the target-list is to be used as a sorting attribute. The

retrieval request may use the optional by-clause on any

attribute for the particular database, as long as that

attribute is within the requests target-list. The sorting is

done In relation to the user specified attribute, and always

responds with the data sorted in ascending order. Below is a

sample retrieval using the optional by-clause, followed by

[RETRIEVE(TEMP=Part) (PNO,NAME,CITY)BY CITY] the results of

the retrieval.

(<PNO, P2>, <NAME, Washer>, <CITY, Carmel>)
(<PNO, P1>, <NAME, Nuts>, <CITY, Columbus>)
(<PNO, P3>, <NAME, Staples>, <CITY, Gilroy>)
(<PNO, P5>, <NAME, Bolts>, <CITY, London>)
(<PNO, P9), <NAME, Screw>, <CITY, Monterey>)
(<PNO, P7>, <NAME, Nails>, <CITY, Salinas>)

We note that the results of the retrieval are presented as

attribute-value pairs sorted in ascending order by city.

B. IMPLEMENTATION AND INTEGRATION

In this section we describe the implementation, and

integration of the optional sorted retrieval operation into

the existing MBDS software. First, the basic operation of

the sorted retrieval at the software level is presented.

Then, the basic functionality of the process is discussed.

This is followed by a detailed trace of an example sorted

retrieval.

66

* ~ ~ ~ . r' r*****W



Our goals for this implementation were the same as for

the aggregate operator implementation. Like the aggregate

operator implementation, the need for the by-clause had been

foreseen in the initial design of MBDS. The tasks of

parsing, syntax checking, and formatting the request table

had already been implemented in the request preparation

process of the controller. Thus our implementation was

divided into two areas, record processing in the backend and

post processing in the controller.

1. The Basic Operation

The operation of a sorted retrieval in the backend

is nearly identical to a non-sorted retrieval. When a

retrieve request arrives in record processing, a search is

performed on the target list, as shown in Figure 4.a, to see

if it is a sorted retrieval operation. If it is a sorted

retrieval, a hashing table is allocated for use in

processing the response data. Each record that matches the

query for the request is hashed on the sort attribute-value

into the virtual memory, and the hashed address is stored in

the hash table. When the last record has been retrieved and

hashed, the data is prepared for sending to post processing.

First, each table entry is checked for primary

buckets. If there is a primary bucket a check for overflow

buckets is made. Every bucket(s) is sorted and then sent to

post processing. As each message arrives in post processing

the buckets are extracted and merged into a hash table. The

67 N

i~a

U.



hash table used is the same size (i.e., it has the same

number of index entries) as the table used ih record

processing. Therefore, the bucket number, along with the

corresponding data, is sent in the message. When the message

arrives, there is no need to perform the hashing

calculations because the bucket number is already known.

When the results from the last backend have arrived and been

merged, the data is taken from the hash table and sent to

the test interface process. The data is then simply

displayed as ordinary data.

2. Execution of the Sorted Retrieval

This section describes the sequence of events in the

execution of a retrieve operation which includes a by-

clause. The reader will recall that MBDS uses intra- and

inter-computer messages for the control and transferring of

data. Figure 2.g lists the types of messages used by MBDS

for internal process coordination and control. Figure 5.a

schematically displays the controller and backend processes

as well as the messages which are sent between the

individual processes and between the backend and controller

for a retrieval with an optional sort. The order in which

the messages are passed are denoted alphabetically (e.g. 'A'

is first). The number following the letter denotes the

message type as listed in Figure 2.g.

A retrieve request with an optional sort originates

in the test interface process. The completed request is

68



TO THE USE

R2 TEST AI

GETO E STOR POSUTCEM1 lRET'RrO

PS PER T E RG GWO ET

G17MIM twGEe4
F1~

M3 w-n( M- OR M 3

Lsm IN 0

SROADT BUS

PUT NE mw 0 n r

DIECOW SEAC UN ~I

TODES TI DSK (omIE

Figure 5.a The Sequence of Messages For Executing
a Retrieve With Aggregate Operator

69

GEN ", MARCH. .

- ~ ~M30



sent from the test interface to the request preparation

process for parsing, syntax checking, and formatting into a

request table (Al). Request preparation notifies post

processing of the number of the requests in the transaction

(B3). Upon completion, request preparation sends the parsed

traffic unit to directory management (C6). Directory

management notifies concurrency control to lock the

directory attributes (D22). After the attributes are locked,

concurrency control notifies directory management of the

event (E28), and directory management begins a descriptor

search for the retrieve. Once this is completed, directory

management notifies concurrency control to release the locks

on the attributes (F25), and directory management broadcasts

the descriptor ids to the other backends (G17). The

directory management processes In the other backends are

also sending their descriptor ids to the directory

management in this backend (H17). The backends use the

information received from all of the other backends to form

descriptor-id groups. These groups are sent to concurrency

control to be locked (123). After concurrency control

notifies directory management that these groups are locked,

(J29) directory management performs a cluster search and

notifies concurrency control to release the locks for the

retrieve (K27). Next, directory management sends the cluster

ids for the retrieval to concurrency control (L24).

Concurrency control notifies directory management when the

70

ZP W ~ ~ ~



clusters have been locked (M30). At this time, directory

management determines the disk addresses for the request.

Directory management sends the retrieve request and the

corresponding disk addresses to record processing (Ni8). As

needed, record processing interacts with disk I/O for

database information (020). When record processing finishes

executing the retrieve, concurrency control is notified

(P32) that the request is done, and the locks on the cluster

ids are released.

After the last record is retrieved for a backend,

the individual buckets are sorted and then sent to post

processing (Q13). As the records arrive in post processing

they are merged with the records already received from other

backends. After the results have been received from all the

backends the results are sent to the test interface for

display (R2).

C. TESTING

In this section we discuss the testing of the sorted

aggregate retrieval. Testing was divided into two primary

phases. The first phase occurred prior to the integration

of the new software into MBDS and the second phase after

integration. The testing methods used were the same as

those used for testing the aggregate retrieval software (see

section 4.C).

71



For the first phase of testing the software was compiled

and tested independently of MBDS. A test harness was used

to test selected paths in the modules for normal as well as

boundary conditions. During this stage a symbolic debugger

was used to assist in debugging. Many minor bugs were found

and corrected during this phase.

The second phase of testing involved testing of the new

modules after integration Into MBDS. Because of the size

and complexity of MBDS this phase of testing was divided

Into three parts. The first part Involved testing of just

the modules in record processing using a single backend. The

second part involved the testing of the record processing

modules and the post processing modules, again using only a

single backend. The third part of testing consisted of

repeating all earlier testing using multiple backends. No

major errors were discovered in this phase. Those that were

found were in general easily corrected. The testing of the

combination of aggregate retrieval with the by clause is

discussed in Section 5.D.

D. THE COMBINATION SORTED AND AGGREGATE RETRIEVAL

This section contains a discussion on the integration of

the two retrieval operations, aggregate retrieval and sorted

retrieval. Each operator was implemented and integrated into

the existing MBDS software independently. The goal was to

ensure the combined operation of the two operators.

72



The two operators, aggregate retrieval and sorted

retrieval, each intercept data in record processing. The

data intercepted has already been extracted from the

database and is ready for sending to the controller. The

data is taken by the new operations, and acted on

accordingly, i.e. hashed If It is a sorted retrieve, or

stored in the epropriate data structure if it is an

aggregate operation. Both of the operations intercept the

data at approximately the same place in the code. In order

for the two operations to act on data retrieved for one

request, they each must be provided the necessary data.

The data required by each of the two operations is

disjoint, i.e., the sorted retrieval operation doesn't

require any of the data that the aggregate operation uses.

If a retrieval has a by-clause, and aggregate operation on

the same attribute then that attribute-value pair will be

retrieved twice for each record. This allowed us to give one

of the operations precedence over the other, so data not

used by the first operation is passed on to the next

operation. The aggregate operation was initially designed to

take only the data it required, then passing the rest of the

data on to post processing. We simply altered the aggregate

operation function so that it passed along the data to the

sorted retrieval operation if the request contained a by-

clause. The data received by the sorted retrieval operation

is the same data that would have been received if there was

73

IrI



no aggregation being performed. This made the combination of

aggregate and sorted retrieval transparent to the sorted

retrieval operation, and required only minor changes to the

processing for aggregate operations. Each of the operations

sends Its data back to post processing at the end of a

request using their respective message types.

The arrival of two separate messages in post processing

for a single request posed another problem to be solved.

Under normal circumstances, there may be any number of

messages arriving in post processing in response to a

request. The last message for a particular request is

labeled with a special character in the message signifying

'End-of Request',i.e., the last set of results for a request

from a particular backend. When both operations sent

independent messages to post processing for a single

request, post processing had to be able to know that a

combination request was being performed. Once this was

known, post processing would wait for two 'End-of-Result'

messages instead of the usual one.

A third obstacle arose at the end of a combination

retrieval. When acting independently, the two operations

each released memory and sent the response data to the test

interface at the end of the request. When a combination

request was made, the first operation to receive and process

all of its data sent the data to the test interface and

released the memory for the entire request. This had to be

74



modified so that the memory was released only after both

operations had sent their results off to the test interface

process.

JX

75



VI. CONCLUSIONS

In this final chapter, we provide some concluding

remarks. In the first part of the chapter, we furnish a

summary of the work conducted for this thesis. Next, we

discuss the difficulties and problems encountered while

completing the work for this thesis as well as addressing

some of the solutions that were attempted. Finally, we

provide some recommendations for future efforts.

A. SUMMARY

Performance problems and upgrade issues have always been

an obstacle in traditional mainframe-based systems and

software single-backend systems. The Multi-Backend Database

System, or MBDS, utilizing the software multiple-backend

approach, attempts to overcome these problems through

specialization of the database operations on multiple,

dedicated backends. The two goals of MBDS are to overcome

upgrade and performance problems normally associated with

traditional systems. In this thesis, we have provided a

methodology for evaluating MBDS in terms of response-time

reduction and response-time invarlance. We discuss the

utilization of CABS in the benchmarking process. We find

that CABS Is most useful when conducting benchmark tests

using very large test databases. We then discuss the MBDS

76



internal parameters and constants, and consider their

Importance in the configuration of MBDS.

This thesis also presents our design, implementation,

and integration work on two new types of retrieval

operations, the aggregate retrieval and the sorted

retrieval. The aggregate retrieval operation provides the

user with an integral tool for the interpretation of data.

The aggregate retrieval operation allows the user to

retrieve data, and perform any number of the five primary

aggregate operators, COUNT, SUM, MIN, MAX, or AVERAGE, on

that data. The sorted retrieval operation provides the user

with a means of organizing data in a way meaningful and

useful to the user. The user may retrieve data from the

database, and have the data presented in a sorted manner in

relation to any of the attributes. A discussion of both of

these operations and an example of Its use has been

provided.

B. DIFFICULTIES ENCOUNTERED

There were several problems encountered during the

course of the thesis work. This section explains the
4.'

problems as well as the solutions that were attempted.

1. Messaae Passin"

The primary problem encountered was the message

passing facilities provided for inter-computer messages in

MBDS. The actual benchmarking of MBDS was not performed due

to this problem. MBDS functioned with no difficulties on the

77

V



previous hardware and software configuration. This

configuration was similar to the current configuration, but

utilized a Motorola 68010 CPU. When MBDS was moved to the

current configuration, utilizing the faster Motorola 68020

CPU, difficulties began to arise. It was found that messages

were being sent, but not being received at their

destinations. The messages were simply being lost. Since

MBDS performed flawlessly before the new configuration, the

possibility of the MBDS code as causing the problem was

ruled out. It seemed unlikely that the new CPU itself caused

the problem, but the faster execution speed of the new CPU

could have contributed. The problem was found to lie

primarily with the transmission of messages between

computers in MBDS, i.e., among the backends and the

controller. Since MBDS depends on the reliable transmission

of broadcast messages, this made for a very distressing

situation. Messages are broadcast from the controller to

backends, and between backends. The Unix operating system

provides the underlying protocols used for the message

passing. Unfortunately, the only available protocol for

broadcasting in the current operating system is an

unreliable protocol (which, we note, was more reliable in

the 68010 environment). In order to perform the benchmarking

of MBDS, we investigated a number of solutions to our

problem.

78



The first solution involved trying a new version of

the Unix operating system. The main difference between the

old and new versions was the inclusion of multiple software

buffers for incoming messages. The older version provided a

single buffer, while the new version provided up to eight

buffers. It was thought that a possible reason for losing

inter-computer messages, was that the messages were being

received too fast. With only one buffer, if a message

arrived before its predecessor was processed, the buffer was

still full, and the new message was lost. However, the

installation of the new operating system made no difference.

The second solution was to use newer, faster

Ethernet controller hardware. It was thought that if the

hardware could process the messages faster, there would be

less of a chance of the software buffers being full, and

hence lost messages. The new Ethernet controller cards were

rated to be 40 percent faster than the existing controller

cards. This solution caused messages to be passed faster,

but had no effect in terms of lost messages.

Another factor to be considered Is the usage of the

network being used by MBDS. It was thought that the network

was possibly being overworked at times of peak broadcast

activity, and was therefore unable to handle all of the

messages. This possibility lead us to the monitoring of the

Ethernet activity. It was found that the network was not

being overworked at all. At times of peak broadcasting, the

79

" I



network rose to a peak utilization of under five percent

(for four backends). This certainly was not the cause of the

problem.

The last attempted solution concerned the amount of

primary memory in each of the backends. Through monitoring

of the operating system processes, it was found that MBDS

processes were being paged to disk rather often. The paging

was due to the size of the memory in the backends. Each of

the backends contains two Mbytes of main memory. The amount

of available memory is approximately 820 Kbytes. This

relatively small memory space caused the swapping of the

MBDS processes in the backends. The paging sometimes

occurred at crucial times when the process which processes

the message is paged out, possibly causing the lose of a

message. An obvious solution to this problem was to make the

MBDS processes responsible for handling network message

traffic (i.e., get-net and put-net In the backends and the

controller) to be memory resident (i.e., incapable of being

paged out). This solution was tried, but did not solve the

problem.

2. System Size

The size of MBDS and the Unix operating system both

contributed to a very steep learning curve for students

working on the MBDS system. The amount of information

initially required by a student to work on MBDS is very

large, and requires a substantial portion of the students

80

.~~1 M l~ l 11 - * * ' % % .. ~ . .



alloted thesis time. Besides learning an entire operating

system, the student must learn both the concepts and

implementation details of a very large database system. In

order to understand the MBDS implementation, the student

must also become very proficient in the C language. These

requirements constrain the students time to work with the

system.

The system utility, Make, also caused some problems.

Makeflies are used for defining dependencies between files

in a system. The Make utility uses the dependencies to

create an up-to-date version of the system, by compiling

only thos, files which have been changed since the last

compilation. The utility is meant to make the management of

a large system easier. The makefiles that have been defined

for MBDS caused a lot of confusion. The makefiles are

written with very intricate and complicated dependencies.

Additionally, there are several versions of MBDS in use at

any one time. and each version uses source code from other

versions. The difficulty in modifying the makefiles coupled

with the multiple versions made even the simple task of

compiling the system very difficult at times. Another

related problem arose, and has not yet been solved. When

attempting to compile some portion of the system, the

compiler would work for one version, but not for another.

This would not normally be suspect, but in this case, both

versions utilized the same source code and identical copies

81
%

Nf



of the makefile. However, we do note that without the

makeftiles, our work on the system would have been severely

Impeded. Thus, it seems we can't live with them, and we

can't live without them.

C. RECOMMENDATIONS FOR FUTURE EFFORTS

One of the foremost problems to be solved is the message

passing problem. The system must be brought to a state where

it can operate with any number of backends reliably. The

most promising solution to the problem lies in the upcoming

release of a new operating system supporting a reliable

broadcasting protocol.

Once the problem with the message passing has been

solved, the next obvious step Is to benchmark MBDS. A

complete and thorough test of the system must be conducted

to further validate the MBDS claims of response-time

reduction and response-time invarlance. The methodology

presented in this thesis coupled with the system

configurations presented can be applied to the performance

evaluation of MBDS to produce the required data to validate

the claims of MBDS.

82

..



LIST OF REFERENCES

1. Hsiao, D. K., ed. Advanced Database Machine
Architectures, (see preface), Prentice-Hall, Englewood
Cliffs, New Jersey, 1983.

2. Demurjian, S. A., et al., "A Multi-Backend Database
System for Performance Gains, Capacity Growth, and
Hardware Upgrade," Proceedings of the 1986 2nd
International Conference on Data Engineering. 1986.

3. He, X., et al., "The Implementation of a Multi-Backend
Database System (MBDS): Part II - The First Prototype
MBDS and the Software Engineering Experience," in
Advanced Database Machine Architecture, HKiao (ed.),
Prentice Hall, 1983.

4. Kerr, D. S., et al., "The Implementation of a Multi-
Backend Database System (NBDS): Part I - Software
Engineering Strategies and Efforts Towards a Prototype
MBDS," in Advanced Database Machine Architecture, HNiao
(ed.), Prentice Hall, 1983.

5. Menon, N. J., "Design and Analysis of a Multi-Backend
Database System for Performance Improvement.
Functionality Expansion and Capacity Growth," Ph.D.
Dissertation, The Ohio State University, Columbus, Ohio,
1980.

6. Naval Postgraduate School Report NPS52-87-016. Towards a
Better Understanding of Data Models Through the Multi-
Lingual Database System, by Steven A. Demurjlan, May
1987.

7. Hoiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files," Communications of the
ACM, Vol. 13, No. 2, February 1970; Corrigenda, Vol. 13,
No. 4, April 1970.

8. Wong, I., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," Communications of
the ACM, Vol. 14, No. 9, September 1971.

9. Rothnie, J. B. Jr., "Attribute-Based File Organization
in a Paged Memory Environment," Coamunications of the
AC, Vol. 17, No. 2, February 1974.

83

%V



10. The Ohio State University, Columbus, Ohio, Technical
Report, OSU-CISRC-TR-77-7, DBC Software Requirements for
Supporting Relational Databases, by J. Banerjee and D.
K. Helao, November 1977.

11. Tung, H. L., Design, Analysis, and Implementation of the
Primary Operation, Retrieve-Common, of the Multi-
Backend Database System (MBDS), Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

12. Fenton, G. P. , A Computer Aided Design for the
Generation of Test Transactions and Test Databases and
for the Benchmarking of Parallel, Multiple Backend
Database Systems, Master's Thesis, Naval Postgraduate
School, Monterey, California, June 1986.

13. Vincent, J. R., A Performance Measurement Methodology
for a Nulti-Backend Database System, Master's Thesis,
Naval Postgraduate School, Monterey, California, June
1985.

14. Hunt, A. L., Implementation of the Primary Operation,
Retrieve-Common, of the Muiti-Backend Database System
(NDS), Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1986.

84



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 6
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Computer Technologies Curricular Office
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor David K. Hsiao, Code 52Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Steven A. Demurjian 2
Computer Science and Engineering
U - 155, Room 209
260 Glenbrook Road
University of Connecticut
Storrs, Connecticut 06268

7. Lt. Frank E. Kelbe 3
720 J. Avenue
Coronado, California 92118

8. Lt. Dana S. Majors 3
32 El Verano Way
Yuba City, California 95991

85



o- -q - w "WWW.


